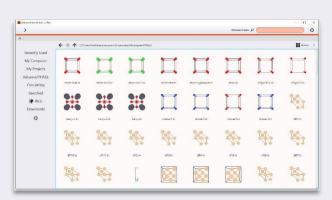
Advance / Nanolabo

Developed by AdvanceSoft Corp. (2018-2022)


http://www.advancesoft.jp

Advance/NanoLabo

An integrated GUI which can graphically operates various calculation solvers such as Quantum ESPRESSO*1, LAMMPS*2, Advance/PHASE (Our product). It is easy to set modeling and calculation conditions by automatically searching information in typical materials databases such as Materials Project*3. Results calculated by solvers are graphically displayed instantaneously.

Features

- Icon display of crystal structures (shown at right)
- Material database search by chemical formula input
- Modelling for crystals, surfaces, interfaces, and molecules
- Support for open source calculation engines
- Various visualization functions like band structure, vibration modes, reaction path afterimage display, kinematic animations, etc.

Functions

<u>Modeling</u>	

Material	Materials Project*3		
database	PubChem* ⁴		
Crystalline	Cell translational movement		
	Supercell		
	Impurity replacement		
	Lattice Defects		
	Space group determination		
	Primitive cell conversion		
	Standard cell conversion		
Surface ·	Surface in any orientation		
Interfaceline	Molecular adsorption on surfaces		
	non-conformal interface [Pro only]		
Molecularline	Drawing organic molecules		
	Solvent molecular filling		
	Polymer Models [Pro only]		

Calculation

0	A 1 /DUA 05		
Computational	Advance/PHASE		
Engine	Quantum ESPRESSO*1		
	LAMMPS*2		
Calculation	SCF calculation, structural optimization		
Functions	Hybrid functional, vdW correction		
	Band structure, density of states (PDOS		
	calculator)		
	Visualization of charge density, etc.		
	First principles MD, classical MD		
	Thermal conductivity, Viscosity coefficient,		
	Diffusion coefficient		
	TD-DFT、XAFS/EELS		
	Phonon (Band structure, Density of states)		
	NEB method, Work Function (ESM method)		
Computation	Job Scheduler		
Control	NanoLabo-API for Python*5		
Resources	Local machine		
	Compute server (SSH connection)		
	Cloud		

Operating Environment

OS	Windows 10 (64 bit)CentOS 7 (64 bit)macOS 10.15	
Machine Spec	CPU: Intel Core i7 or higher	
(Recommended)	Memory: 10 GB or more	

Online Manual

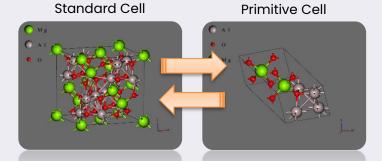
^{*1} Quantum ESPRESSO is a general-purpose open-source application for first-principles calculation, distributed under the GPL license. (https://www.quantum-espresso.org)

^{*2} LAMMPS is a general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. (https://lammps.sandia.gov)

^{*3} The Materials Project is a database for materials informatics developed at Lawrence Berkeley National Laboratory. (https://materialsproject.org)

^{*4} PubChem is a database for biochemistry developed at the National Center for Biotechnology Information. (https://pubchem.ncbi.nlm.nih.gov)

^{*5} API specifications are available in the Advance/NanoLabo online manual. (https://nanolabo-doc.readthedocs.io/ja/latest/python.html)


Modeling

1. Material database

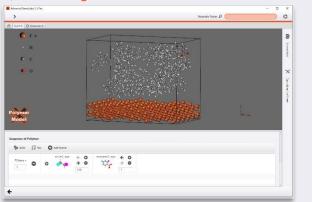
- Entering chemical formula or molecular structure (SMILES) or molecule name into the search field, you can get the crystal or molecular structure.
- Connect to the following databases via the Internet
 - Crystal structure : Materials Project
 - Molecular Structures: PubChem


Cell conversion (spinel)

Materials Finder D ZrO2

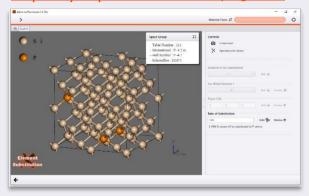
3. Surface · Interfaceline

Surface model (Ni₃AI [556]surface)

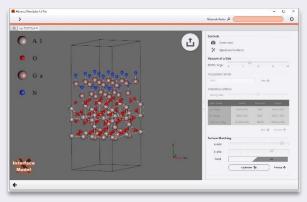


Based on our original SlabGenom algorithm
Arbitrary surface conditions can be generated.

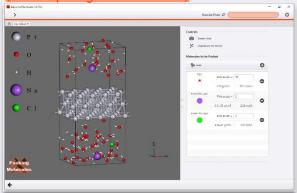
4. Molecularline


Polymer Models

(Possible to generate an interface with a metal slab)



Impurity replacement (P doping on Si)


Interface model (Al₂O₃/GaN interface)

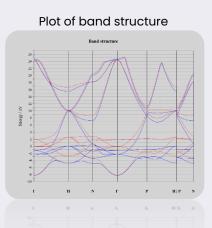
Lattice matching by the continuous fractional algorithm. Automatically optimize the distance between planes caused by the classical molecular force field.

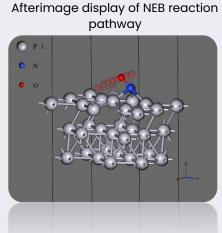
Solvent molecular filling

(NaCl aq filling around Pt slab)

With our original packing algorithm, Arbitrary solvent molecules and ions can be placed in high density.

Calculation

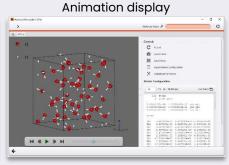

Quantum ESPRESSO


- Generate appropriate input files automatically, immediately from the crystal structure.
- ✓ Users can perform various calculations with no complicated setting of calculation conditions.
- ✓ Supports SCF calculations, structural optimization, band structure, density of states, ab initio MD, TD-DFT, Phonon, and NEB methods
- ✓ Visualizes the progress and results of calculations. (Various types of post-processing are available)

Input screen for Quantum ESPRESSO

Mercuribular In 18 Pro

Mercuribular D. 18



LAMMPS

- ✓ Supports Lennard-Jones, Charge, OPLS-AA, ReaxFF, Tersoff, EAM, MEAM, and Neural Network force fields*1.
- For organic molecules, the force field parameters of OPLS-AA are automatically assigned.
- ✓ Multi-step calculation scheme can be set. (e.g., 100 ps motion in NVT ensemble, then switch to NPT ensemble.)
- ✓ Displays animation of the dynamics even during the calculation. (Save as MP4 format)

Multi Step Calculation Scheme

*1 To use the Neural Network force field, you will need to purchase Advance/NeuralMD separately.

Computational Resources

Run calculations on a local machine.

- Management of calculations with built-in job scheduler - Use of PBS and SLURM (Linux version only)

- Run calculations on a Linux server via SSH connection - Job management by PBS and SLURM

- Rescale ScaleX Platform*2
- SaaS-type cloud environment provided by Rescale, Inc. (https://www.rescale.com/jp/)
- Submitting jobs to the cloud from NanoLabo installed on a local machine - Exabyte.io*2
- SaaS-type cloud environment provided by Exabyte Inc.

(https://www.exabyte.io/)

*2 Additional fees apply for the use of cloud services.

- NanoLabo can be used with remote desktop on the platforms.

Roadmap

Release schedule	version	Features to be implemented	
2022/02	2.4	Support the Open Catalyst Project's Universal Force Field(Graph Neural Networks)	
2022/05	2.5 Function to generate Neural Network Force by Self-Learning Hybrid Monte Carlo Meth		
2022/09	2.6		
2023 -	X.X	Modulus of elasticity (stiffness tensor) *1 NWChem Interface 3D-RISM/ESM-RISM*1 Calculation of thermodynamic quantities and phase diagrams *1 Alloy (cluster expansion method) *1 XPS spectrum*1	

^{*1} This feature is only available in Advance/NanoLabo Pro.

New Products Information

- Advance/NanoModeler (tentative), a new product that enables Advance/NanoLabo modeling features from <u>Python scripts</u>, is scheduled for release in 2023!
- For impure substitution models and incommensurate interface models, many structures with different conditions can be generated automatically.
- ✓ Suitable for research in Material Informatics.

Licensing

License Type

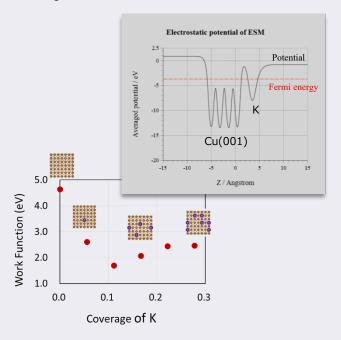
os	License Type
Windows	Node Lock (Remote Desktop available)
Linux	Floating
macOS	Node Lock (Remote Desktop available)

License Price

Product	Annual (Business / National Institute)	Annual (Academic)	Permanent (Business / National Institute)	Permanent (Academic)
Advance/NanoLabo	500,000JPY*3	250,000JPY*3	1,500,000JPY*3	750,000JPY* ³
Advance/NanoLabo Pro*2	900,000JPY* ³	450,000JPY*3	2,700,000JPY*3	1,350,000JPY*3

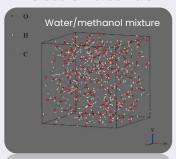
^{*2} In Advance/NanoLabo Pro, mismatched interface and polymer modeling functions are available.

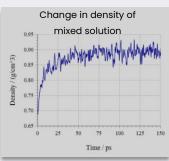
Trial licenses


Free trial licenses are available for one month per person.

^{*3} License price can be reduced by purchasing 3 or more units at the same time. For details, please contact our sales representative.

Cases


Work Function Calculation of K/Cu(001) System by ESM Method

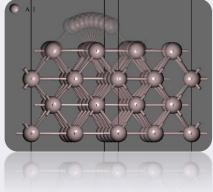

By using the Effective Screening Medium (ESM) method, the work functions on a Cu(001) surface with adsorbed potassium are calculated. The changes in the work function depending on the coating ratio can be simulated.

Calculation of molecular dynamics of water/methanol mixtures

A model of a water/methanol mixture (1:1 volume ratio) is created and molecular dynamics simulations are performed by the NPT ensemble under the condition of normal temperature and pressure (300K, 1bar). OPLS-AA is used for the molecular force field.

Solution	Density (calculated)	Density (experimental)	
Water	1.00 g/cm³	1.00 g/cm ^{3 *1}	
Methanol	0.75 g/cm³	0.79 g/cm³ *1	
Water/methanol	0.89 g/cm³	0.93 g/cm ^{3 *2}	

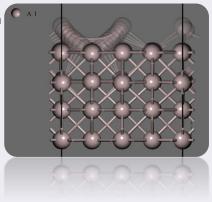
^{*1} S. Kim, et al: Nucleic Acids Res. 2019; 47(D1):D1102-1109.


Analysis of Diffusion Path of Al Adatom by NEB Method

Using the NEB method, we have analyzed the diffusion process of adatom on Al(001) surface, and obtained the activation energy by calculating the two diffusion processes of Hopping and Exchange.

Hopping diffusion

 $E_a = 0.46 \text{ eV}$



Exchange diffusion

 $E_a = 0.14 \text{ eV}$

AdvanceSoft Corporation

Please contact us first if you would like more information. Demonstrations are also possible.

17F WEST, Shin-Ochanomizu Bldg. 4-3, Kandasurugadai Chiyoda-ku, Tokyo 101-0062 Japan

TEL: +81-03-6826-3971 FAX: +81-03-5283-6580

URL: http://www.advancesoft.jp/

E-mail: office@advancesoft.jp

^{*2} The Chemical Society of Japan (ed.): "Handbook of Chemistry, 5th Edition, Basic Edition II", Maruzen (2004) (in Japanese)